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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-279

OPERATIONAL METHOD OF DETERMINING INITIAL CONTOUR OF AND
PRESSURE FIELD ABOUT A SUPERSONIC JET

By Gerald W. Englert

SUMMARY

Simple expressions for estimating the initial contour of a jet
exhausting into a supersonic stream and into quiescent surroundings have
been developed. These expressions were obtained by using a modified
Laplace transform to solve the linearized potential flow equation. The
initial slope of the jet boundary was kept as a parameter in the final
expressions, which permitted a study of the use of an exact, in place of
a linearized, initial value. Results were compared with characteristics
solutions and experimental data.

An expression was also developed to determine the pressure field of
a supersonic stream surrounding the jet. This expression was applied to
determine the pressure influence of the jet on a nearby flat plate.
These results were also compared with experimental data.

INTRODUCTION

Various flight vehicles have Jjets issuing from their exhaust nozzles
near other components such as wings, control surfaces, and other engines.
The contour of the jet and resulting field about it may then alter the
pressure distribution on these nearby components and thus their perform-
ance (refs. 1 to 3). The pluming jet from an underexpanded nozzle may
transmit pressure changes upstream on the boattail surface through the
boundary layer and even cause flow separation (ref. 4). The initial
expansion of the jet also influences the downstream mixing region.
Initial-jet-contour prediction is important for the determination of the
pressure on a wide-base annulus (ref. 5).

The number of independent variables involved in the relevant geome-
tries and operating conditions usually precludes completeness of economic
systematic experimental solution to these problems. A necessary step
toward the quantitative prediction of these effects is a means of deter-
mining the initial contour of the exhaust jet. An extensive use of
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characteristics is made in references 6 and 7 to determine the initial
contour of a supersonic jet exhausting into still air. Replacing the
quiescent air by a supersonic stream, however, appreciably increases the
labor to solve the already unwieldy problem when using characteristics.
A simplified step-by-step method of approximating initial jet contour is
presented in reference 8.

A theory which leads to a simple explicit relation for the contour
of a jet exhausting into quiescent surroundings is presented in refer-
ence 9. This method utilizes the linearized equations of motion, how-
ever, and is therefore accompanied by questions of accuracy and range of
applicability. The predominant feature of this method is that of taking
the laplace transform of the linearized supersonic equations of motion.
Piecewise continuous flows such as found in the periodic structure of
jets exhausting into still air then become continuous in the transformed
plane. Advantage is also gained by the supersonic potential equation
for axisymmetric flow reducing to an ordinary differential equation in
the transformed plane. Essentially this same technique was used in the
work of reference 10 to study the oscillations of a supersonic Jet ex-
hausting into a supersonic ambient stream. Although limited in quanti-
tative application, this analysis contributes appreciably to an under-
standing of the role of various variables in determining jet contour.

This paper extends the method of reference 9 to the case of an
axisymetric jet exhausting into a supersonic stream. The inverse
Laplace transforms of the internal (jet) flow and external (ambient)
flow were taken separately in this report and then combined in the
physical plane to find the jet boundary as opposed to the taking of the
inverse transform in the last step in reference 10. The initial inclina-
tion of the jet was preserved as a separate parameter in the final equa-
tion for jet contour so that improvement of linearized results by exact
initial conditions could be studied. Isolation of the initial inclina-
tion then also provides a means of semiempirically accounting for effects
of nozzle wall and boattail angle. The method was finally extended to
determine the pressure field about the jet in the external supersonic
stream for purposes of determining jet influences on nearby aerodynamic
surfaces.

SYMBOLS

a constant in eqg. (2)

81,8282 congtants in eq. (9)
24,85

3 Me - 1




b constant in eq. (2)

bl,bz,b3 cogstant coefficients in differential eqgs. used to determine

H Heaviside unit function, H(z) = 0 for 2z <0 and H(z) =1
for 2 >0

I, modified Bessel function of first kind of order n

Kn modified Bessel function of second kind of order n

k constant in eq. (11b)

z -Az
<z modified ILaplace transform such as if{f(z)} = K./; f(z)e dz
M Mach number
P pressure
4y, 9, constants used in conjunction with eq. (12)

R T - Ty
r radial distance from jet axis of symmetry
s dummy variable
U undisturbed velocity in z-direction
Z axial distance from nozzle-exit station
a, B constants in eq. (12)
T ratio of specific heats
5 Dirac delta function, 8(z) =0 for z # 0 and &(z) = =
for z =0 and fms(z)dz=l
-0
7 slope of jet boundary
A variable in transformed space
VirVorVz constants in second-order solution of eq. (9)

§l,§2,§3 roots of cubic characteristics equation



mass density

) perturbation velocity potential due to jet
Subscripts:

a guiescent medium surrounding Jet

b boundary of jet

ext external

int internal

J undisturbed conditions in jet at nozzle exit
0 boundary of jet at nozzle exit

o undisturbed external stream

Superscripts:

! differentiation with respect to argument of function

— operational form

ANATYSIS

Two cases are considered: an axisymmetric supersonic Jjet exhausting
into a supersonic stream (case 1) and into a quiescent medium (case 2).
In the linearized theory, the internal flow (from the nozzle) and ex-
ternal flow are both assumed to be uniform and parallel to one another
at the nozzle-exit station (fig. 1). It is also assumed for case 1 that
no appreciable base region is present; however, for a very large base,
case 1 reduces to case 2. Simple explicit algebraic expressions are
derived for the jet contour for both of these cases. An expression
which can be evaluated by quadratures to determine the pressure field
in the supersonic stream about the jet is also derived. These equations
and their restrictions are listed in the SUMMARY OF RESULTS for con-
venient reference.

Basic Equations

Let the jet axis coincide with the z-axis in a cylindrical coordi-
nate system and let the nozzle-exit station be at z = O. The familiar
linearized supersonic potential equation based on continuity, momentum,
and irrotationality considerations is for axisymmetric flow
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where ¢ 1is the perturbation veloecity potential due to the jet, and
B = A/M2 - 1. No disturbance from the jet is propagated ahead of the
nozzle-exit station, and thus (39/dz),—0 = ¢(0) = 0. Following the pro-

cedure of reference 9, the potential equation is transformed into opera-
tional form by multiplying by Ne-A\Z  and then integrating with respect
to z between the limits 0 to . This results in the Bessel equation

o —
d 1 d 2~ 2—

where a bar over a symbol signifies that it is in transformed space as
opposed to the original space, that is,

£(A) = A j:o jE'(z)e_7\z dz

The general solution of equation (1) is
® = aKy(BrA) + bI(BrA) (2)

Boundary conditions. - Let n(z) be the slope of the jet boundary,
and let the subscript b denote conditions on this boundary between the
internal (jet) and external flow. No mixing is considered.

The boundary conditions to be satisfied by both internal and ex-
ternal streams are

(%Z‘f)b - Un(2) (32)
pbext B pbint (3b)

The external flow must also satisfy the boundary condition

%g >0 as r > \L

or in transformed space (42)
XM ->0 as r > J

whereas the internal flow must satisfy
%% =0 at r=0 )

or in transformed space > (4v)
o9




The last two boundary conditions are satisfied by setting a = 0
in equation (2) for internal flow and b = 0 for external flow. This

is apparent from the variation of the Bessel functions K, and I, with

their arguments.

External flow. - Use of equations (2), (3a), and (4a) determines a

as
_ UM
- Bm%Kl(Bwrij
so that
—  Un(NKo(Ber)

® = TR (BrpN)

where the subscript « refers to undisturbed conditions in the external
flow.

The linearized pressure coefficient

Cp_P’Pm_ ]_%EE
2 meE U, oz

in operational form becomes

o]
)
el
8
I
1
|3

— -0 (5)

so that
D - P, ﬁ(?\)Ko(BwI')\)
p UZ - BooKl(Boorbk)

o 00

(6)

Internal flow. - Combining equations (2), (3a), and (4b) determines
b as

__ um)
BjXIIKBj%rb)

and thus

5 = SN Io(Bynr)
Bjkll(Bj%rb)
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where the subscript J refers to jet flow conditions at the nozzle-exit
station (z = 0). The linearized pressure coefficient in operational
form then becomes

T-py  ANIEN) )
ij§ lel(BJ.?\rb)
Jet Contour for Supersonic External Flow
Substitution of equations (3b), (6), and (7) in the identity
B, - Py =(§b-pw+pw—pj)EU_Z
pJUg pwUﬁ pwUz pj U?
results in
Py~ B, p_UZ =) Ko (B ) L 50 IO(BJ.rbM ®)
0 .U2 ijg Bo K7 {Berph) B Il(Bjrb?\)

The interpretation of equation (8) into physical space is quite
lengthy and is given in the appendix. This appendix contains essentially
the same expressions as interpreted in reference 9 but is included here
for completeness. The result is that

P. = P,
J—Z = alq(z) - __/ n(s) ds + 2 .2 ( ) n(s) ds
K rb 0
-3 % Zz's n(s)ds+£ n(s)ds+..
16 Ty o (Fjrb 256 Ty
(9)
z
for 0 < <2
- Bjrb
where
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a. = prw 1
27 282 @2
PsY5 Po B3
meE ?i 1
T T 25T 2
p. .U, B B
ddJd = J
0 = meE B§ 1
47 24T 2
PiV5 B By

2R3
8 = Pl Bj + L
5 2 35 o2
P3Uj B Bj

First-order solution. - Consider first the solution of equation (9)

in which powers of (z - s)/Bjrb greater than the first are neglected.
Call this the "first-order" solution. Assume that changes in 1y are

small compared with the radius of the jet at the nozzle-exit station rg,
so that ry ® ry. Then differentiating equation (9) with respect to =z
results in the differential equation

2
a Rb de
a;E— + bl az—'+ bsz =0

where

Rb=rb'rO=L n(s) ds

a

2
b, = -
1
ZrOal
3 23
bz 8 B rza
J 071
The boundary conditions are
R(0) =0
and
n(0)

L
i
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From equation (9)

1 -

_ Py P, _ Pg

n(0) 5 5
ijjal Y .Msa

(10)

The first-order solution is then

> ¥
- —4:——sz T—bzz

R = - n(0)\e -e

{11a)

For the usual case, b, > b§/4, and hence the exponents of e in

N the numerator are conjugate imaginary numbers. In this case the solution
' reduces to

‘ R = 1(0) sin (kz) (11b)

b.z/2
ke L /*
) where k = 4/32 - b?_/é.

Second-order solution. - Consider next the solution of equation (9)
in which only powers of (z - s)/Bjrb greater than the second are neg-
lected. Call this the "second-order" solution. For r = ry the second

derivative of equation (9) with respect to 2z results in the differ~
ential equation

a°R, a°R,

+ b
1
az az2

+ by —2 + zR = 0

where by and by are the same as before, and

a
by = - 3 513;
To®3%1
N The boundary condition
(0) = L n(0)
n'(0) = n{o
. 2rpgg

is obtained from the first derivative of equation (9). This supplements
the two previous boundary conditions.
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From a source such as reference 11

3 4 3
= 1 2 3
Rb = vle + vze + vse

Z

where gl, 52, and 53 are roots of the algebraic equation

3 2 _
EY + blg + bzg + b3 =0

In cases of practical interest €., €5, and £z are unequal; &,

can be a real number, and £, and £z are complex conjugate. It then
follows that v, 1is real and vo 1s a complex conjugate with vz.
Evaluation of the v's from the boundary conditions then results in

= n(0)¢y
U G - E)

n(0)to
(81 - &) (¢, - £5)

V2=-

e = n(0)¢s
5 (él - g5)(52 - g3)

The solution for R +then reduces to

- 1(0) -<@ 31)
o 3(m2+a,£3+[32) +B+39
-3,

e (AF(@ #) + (o= )] eos[ 4E (o - 1)e]

+ [S(cx,2 + B2) - bl(oc + B):] sin [—52@ (a0 - B)%) (12)

3 2
q a
é% + Z? > 0, which is the usual case, and where

if
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3 2 3
9 9 % 91
= — — —_— i — <
a > + 5 + 7 if =7 .0
3 2 3
3 4o a7 ds a3
= . - _C =+ 2] i = >
v 5 + /\/ 57 + T if 57 0

@ [§ &
T AT

2
A
3

3
bybs 2bq

A = bz = —z— + Z7-

Jet Contour for Quiescent Surroundings

The following derivation is essentially that of reference 9 except
that the answer is given as a series expression and the initial slope of
the jet contour is labeled.

At the boundary of the Jjet the pressure must equal the constant
value of the quiescent external field, and

Pa " Pj_ _ NoI,(B.ry )
p.U. dJ
J d
by use of equations (2), (4b), and (5), the undisturbed or reference
stream now being the flow at the nozzle-exit station. The subscript a
refers to the quiescent external field. Solving for b and using
equation (2) again yield

_ Pj- 7D, IO(Bjr%)
¢ = pyU; N(B;pN)
At the Jet boundary
ﬁm=i{§)=%-%BFw¥&) (1)
Uy \dr/p ijg J To(Byroh)

if Ty ~ rQo. It then follows that



12

zZ z/B-r
- JTo
B Py 7Py 2 -1 Il(BerM z

R = (z)dz = ———2 B v
o n\z)jdz z C3T0 T (BN S\BT
o o 5U3 o o\B3%0 350

Using equations (A2) for the Bessel functions and dividing the numerator
by the denominator result in

P. - P z/Bjro
a .2 -1 1 1 1
= —él—-g— RS - - -
o P 5V’ J*o £ { ZBjToA s(BerM? 8(Bjro?\)3
0

. 2
25 }d(Z)_pJ PaBzro[z l(z )
ANV SR . - ] . T Z\B.
128(B;roN) BsTo o jug UL Bsro  4\Bjrg

__L.( z )5 -1 ( 2 )4... ..]

The flow in the immediate vicinity of the nozzle trailing edge is

ry, - T
two-dimensional, since lim ;hﬂfa—g = 0. For two-dimensional flow
z~0
Py - pa
—‘1——2 By = n(0) (14)
P3U

so that
3

%0 nfs - i) - ) ) o

Comparison of this result with the numerical result of reference 9 is

shown in figure 2. Good agreement is obtained up to a z/Bjro of
almost 2.

Pressure Field of External Supersonic Flow

An expression to determine the incremental pressure due to the
influence of the jet on the external supersonic field is derived in this
section. This expression may be useful in determining Jjet interferences
with forces and moments on flight configurations having surfaces within
the characteristic surface of disturbance emanating from the nozzle-exit

station. Some application is shown in the section DISCUSSION OF RESULTS.
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Proceeding to interpret equation (6), for Ty ~ Tos
PmUi IL}i(erOK)
L [* s(a - s)a(e) (16)
= = S{z - s s)ds 16
B, JO n

by use of the convolution equation where

_ Ao (BrA)
AR ACERY

Using equation (Al)

_(o,m)
T Z (28"

— To
S(A) = A T ¢
1+ }E: —K}Lgl—
m1 (2BrA)t
To B AR _
= A e Q
where
1 9 _ 75 . 3675
3 - BB, At 128(B_Ar)2  1024(B_Ar)S  32,768(B Ar)%
1. 15 105 i 4725 .. ..

- +
8BAT0  128(BNrg)2  1028(BMrg)°  32,768(B Arg)t

Consider the variation of Q with 1/r. This power series can be
expanded into & convergent Taylor series about rqg for constant B,
and A as

_ R2
Qr) = Q(ro) + Q' (ro) l’ + Qn(ro + .

The coefficients can be evaluated as follows:

1, 3 ) 3 .\ 63 N
2BMro  8(B Nrg)2  B(BArg)®  128(B Arp)?

ﬁ(ro) =1-
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I

Q(r.) 1l _ 3 39 _ 153
0 2 2323 33,4 444..5
8B Arg  16BOA“ry  128BA"ry  256BA°rgy

au(r ) = - 1 + 33 _ 141 + 351 +
© 4B Nrp  64BEAPri  128B0A°r3  128BENr§

and so forth, so that

iy -B AR
WAL Y 1, 3 _ 53 N 63

S(A) -
( r ZBToh  8(BrgA)?  8(BroM°  128(B roA)t

I

(o s 39 153
8B A3  16BEAPry  128BOA°r5  256BEAYr3

Y .3 141 . 351 RZ |
4B W3 64BENTE  126B5A°r3  128BiN§ | 2

+

Collecting terms containing like powers of A and taking the inverse
transform of B(A) yield

o 1 (1 R R?
S(Z) = —I'— S(Z - BOOR) - m -I—:C—) - E{% + ;—;g H(Z - BOOR)
1 (3 3R  33R®
+ =5 - = T (z - B .R)H(z - B.R)
BEN r0 2r0 lGrO
1 %3 39R . 141R% 2
- 3. + (z - B,R) H(z - B,R)
1683 \r§ 16r§ 3erg
2 3
+___l4 6_2_15ER+351§ (z - RoR) H(Z - BeR) + . . . (17)
768]3:0° rq Zro Ty

where & 1s the Dirac delta function and H is the Heaviside unit
function. The series in equation (17) converges for 0 <z - B,R < B rg

and R < rgy. Finally substituting equation (17) in (16) yilelds the
following expression for pressure coefficient:

€99-d
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76833 ;% 2r8 r8

P-D T 2 z-B_R
R R n(z_BmR)-Z%G__iZA_S S e
T
P, U, o0 0 0 4r0 4r0
2 Z—BDOR
+ i_3i+§§i£ (z - s -~ B,R)n(s)ds
8Bz \r3 2rf 16r}
o z-B R
3 39R
- 3-3 3 - 9 o 141? .}; (z - s - B,R)2n(s)ds
16B, Ty 161, 32r0
o z-B, R
L1 (63_153R+5533 )./; (z - s - BLR)Zn(s)ds + « - -

(18

The slope at the jet boundary n{z) may be obtained by differentiat-
ing equations (11) or (12) with respect to z or by solving equation
(9) directly for the slope by the procedure used previously to obtain R.

DISCUSSION OF RESULTS

The equations for jet contour for a supersonic external field
(egs. (11) and (12)) as well as a quiescent external field (eg. (15))
each comprise essentially two separable parts: (1) a term denoting the
initial slope of the jet boundary (n(0)) and (2) the remsining part of
the equation, which determines the shape or curvature of the jet boundary
as a function of axial distance from the nozzle exit. Comparisons can
readily be made between the jet shapes determined by equations (11) and
(12) and between the linearized and exact initial jet boundary n(0).
Comparisong of the operational theory in general with characteristic and
experimental data are less systematic because of the limited amount of
these data available. In most cases air with a specific-heat ratio of
1.4 was used as the working medium for both internal and external flows.
Any compressible fluids for which average specific heats and molecular
weights can be selected, however, should be amenable to the theory.

Jet Contour for Supersonic External Flow
Equation (11) for jet contour is based on a solution of equation (9)

in which all powers of z/Bwrb greater than the first are assumed neg-
ligible in the series expressions for W and T' (egs. (AS5) and (A7)),
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whereas in the derivation of equation (12) powers of z/B r, greater
than the second are neglected. The solutions were, therefore, respec-
tively labeled the first- and second-order solutions of the jet-contour
equation. In either case the series representations of W and T' are
valid only for small Z/Bwrb and z/BJ-rb less than 2.

Jet shape. - Figure 3 shows comparisons of the results of equations
(11) and le; over a range of internal and external Mach numbers of 2 to
9 and at nozzle-exit to free-stream static-pressure ratios of 2/3 to 5.
The linearized value of 1{0) was arbitrarily used for this figure; how-
ever, it enters into equations (11) and (12) only as a multiplier and,
therefore, only results as a scale effect on the abscissa.

Over the range of Mach numbers investigated very close agreement
between the two solutions was obtained for axial distances from the
nozzle exit of 0 < z/Brojfl. As axial distance is further increased,
the first-order solution predicts an increasingly greater jet-contour
radius than the second-order solution for p./p°° f 1. The greatest dif-
ference in results, however, is less than 4 percent. This close agree-
ment should, in turn, Jjustify utilization of the simplicity of equations
(11) over (12) for practical cases of determining jet shape.

Initial slope of jet boundary. - A comparison of the linearized and
exact results for n(0) is shown in figure 4 over the same ranges of Mach
number and pressure ratio as in figure 3. The exact results were ob-
tained by use of Prandtl-Meyer expansion curves for the expanding flow
on one side of the jet boundary and by use of two-dimensional shock
charts on the compression side of the boundary. A unigue solution for
n(0) is obtained which yields continuity of pressure and velocity direc-
tion across the jet boundary.

Beyond the common intersection at (1,0) the curves of figure 4
reach a limited deviation and then a second intersection point as pres-
sure ratio is increased. Beyond the second intersection point a devia-
tion greater than 50 percent was reached at the highest jet and lowest
stream Mach numbers. As M, increases and Mj decreases, the second
intersection point is located at higher pj/pm, and deviation of the
linear expression from the exact is less pronounced.

The two-dimensional shock-expansion wave procedure of determining
n(0) provides a means of accounting for local deviations in flow direc-
tion due to nozzle wall and boattail angles. Although this procedure
is justified locally, that is, near the nozzle trailing edge, the com-
bination of this 1{0) with a linearized shape parameter for uniform
axial initial flows may be labeled semlempirical and is studied in
figures 5 and 6.

¢99-H
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Comparison with experimental and characteristics data. - Some
results of using the first-order solution in conjunction with the exact
initial slope are shown in figure 5 for three geometries and test condi-
tions (refs. 3, 6, and 8). The external flow was uniform and approached
the jet in the direction of the jet axis in references 3 and 8; however,
the external flow passed over a boattall and approached the jet at an
angle of 9° in reference 6. In all three references the internal flow
left the nozzle at directions other than axial, the nozzle wall angles
being 12° for reference 3 and 12.5° for references 6 and 8. These angles
were, however, easily accounted for locally in the two~dimensional shock-
expansion procedure discussed in the last section.

A comparison of the operational theory with the experimental data
of reference 3 is shown in figure 5(a). Results are within the indicated
mixing zone of the internal and external streams. The mixing zone is
obtained from a schlieren photograph of the jet interaction region.

Comparisons with two characteristics calculations of references 6
and 8 are presented in figures 5(b) and (c). Exact values for the ini-
tial slope of the jet were used in both calculations; hence the curves
start out together. At distances farther from the nozzle exit the
operational theory curve was slightly below that of the characteristics
theory, the maximum deviation being less than 10 percent. Use of the
results of figure 3 showe that the "first-order" solution is slightly
closer to the characteristics curves than the "second-order" solution.

Jet Contour for Quiescent Surroundings

Again the two-dimensionsl expression may be used for the initial
slope. Only a curve of the Prandtl-Meyer relation or a shock chart is
needed to determine 1n(0), depending on whether the nozzle is under-
expanded or overexpanded as long as the nozzle is flowing full, that is,
the flow i1s not separated. A number of initial slopes for a jet expand-
ing in quiescent air are presented In reference 7 for various specific-
heat ratios and for static~pressure ratios up to 12 and supersonic Jet
Mach numbers up to 3.

A comparison of the linearized equation (eq. (14)) with exact ini-
tial slopes is shown in figure 7. At low pressure ratios the agreement
between linearized and exact values is good, but it becomes poor rapidly
as pressure ratio is increased. At a pressure ratio of 5 the exact value
is almost twice the linearized. This result together with that of fig-
ure 4 shows that considerable improvement can be made by using exact
n(0) as pressure ratio is increased and external Mach number is decreased.

A number of jet contours determined by equation (15) and an exact
n(O) are compared with characteristics-determined contours of references
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6, 7, and 12 in figure 6. The change in jet boundary due to changes in

n(0) is predicted within 12 percent in figures 6(a) and (b). The main ,
difference between the operational theory and characteristics contours

shown in figures 6(a) and (b) is due to a shifting of the axial position

of jet maximum diameter with pressure ratio which is not produced by the
operational theory. Deviation between the two calculations 1s, of course,

zero at the nozzle exit. The meximum deviation in figures 6(a) and (b)

is less than 23 percent. Figure 6{(c) presents results computed at ex-

tremely high pressure ratios but only over a range of axial distance of

0 < BZ < 1. Agreement was within 10 percent.
S s
JT0

Pressure Field of External Supersonic Flow

An example is worked to determine the Jjet incremental pressure on a
flat surface, the closest distance of which from the jet axis is a
straight line located 1 nozzle-exit diameter away from and parallel to
the nozzle axis. The pressures on this surface are the same as those on
a reflection plane located midway between two identical and parallel
jets. The zone of influence of the jet in this plane starts a distance
of Bm(r - ro) downstream of the nozzle-exit station for completely ’

linearized flow (for an exact 17(0) the disturbance starts somewhat up-

stream). A reflected wave from this location does not influence the Jet

for an additional distance of approximately B (r - ro). Therefore the v
Jjet contour remains independent of the external surface for approximately

2B(r - ro) ‘downstream of the nozzle-exit station. The boundary condition

on the flat surface is that the component of velocity normal to the sur-

face is zero. This is automatically satisfied. The pressure on this

surface in the region 1 < ﬁ_r;i____y < 3 is simply twice that given by
T BT - I'p

equation (18) in space, since the pressure from the two jets can be
added together because of the linearity of the external field.

Computations of pressure coefficient on this surface were made for
undisturbed external Mach numbers of 2.5 and 3. Comparison is made in
figure 8 with the experimental data of reference 3 on the line of inter-
section of the aerodynamic surface with the plane passing through the
axes of both the real and the hypothetical jet. The derivative of the
first-order solution (eq. (llb)) with the exact i1nitial jet slope was
used to determine 1n for use in equation (18). The integrals in equa-
tion (18) were then evaluated numerically. The location where the out-
going waves hit the aerodynamic surface was adjusted forward to the posi~ ’
tion consistent with the determination of 1(0).

In general, fair agreement was obtained between the theoretical and
experimental values of pressure coefficient. The initial pressure rise
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on the surface is gradual in the actual case instead of abrupt, probably
because of the influence of the boundary layer. Some differences may be
due to an unaccounted for curvature in a plane normal to the Jjet center-
line of the surface used to get the experimental data.

Effects of additional geometries can be determined by superposition
of the corresponding linearized flow fields as long as the equation
describing the boundary condition can be made linear.

SUMMARY OF RESULTS
The following equations were derived to determine the radius r
of a supersonic jet as a function of axial distance z from the nozzle-

exit station and to determine the pressure field about the jet.

1l. For a jet exhausting into a supersonic stream and with the nozzle
axis parallel to the undisturbed external stream

b2 b2
1 1
( TPt 4/—4"’2"‘)
7(0)e - e
Ty = To - =
/bl blz/z . .
ZA——"bz e o} <'R 5 <2

V4 ~ Bj¥o BTo

where n(O) is the initial slope of the free jet boundary at the nozzle
exit, ry is the radius of the nozzle at its exit station, by and b,
are constants depending only on the undisturbed flow inside the nozzle

at its exit station and on the undisturbed external stream (these con-
stants are described on p. 8), and

oo=‘Vszo-l

Mj and M, are the Mach numbers of the undisturbed flows inside the

nozzle at its exit station and in the external stream, respectively.
For the usual case, b, >'b§/4 and this equation can be written as

N n(0) sin(kz) < _Z z_ <o

eblzfz Bsrg' Bero

b - Yo
k

where
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A solution for this same problem was also obtained when including
one more term in a series expansion before solving the corresponding
differential equation to obtain jet contour. The result was again an
explicit algebraic equation for jet radius as a function of axial dis-
tance from the nozzle-exit station. The equation, however, involved
considerably more terms to compute. Differences in results due to in-
cluding the extra term were less than 4 percent over the range ipvesti—
gated, the simpler solution being slightly closer to the characteristics
curves used to check results. The difference between the simpler solu-
tion and characteristics and experimental data was within 10 percent
over the range investigated.

2. For a jet exhausting into a quiescent surrounding (i.e., a
constant-pressure, zero-velocity field)

I‘=I‘+T](O)B.I‘ —_Z—'_i(z>2_i z 3"1 z 4-0--
b 0 g0 Bjro 4 Bjro 48 Bjro 192 Bjro

Z
0 <y < 2

The use of an exact initial jet slope obtained from two-dimensional
shock and expansion charts in place of a linearized value in any of the
preceding equations permits an estimation of the effects of nozzle wall
and boattail angles on jet contour. Agreement of the theory was then
within 23 percent with two families of characteristics solutions for a
nozzle of varying wall angles and exhausting into quiescent air.

Use of an exact n(O) in place of linearized values also appreciably
improves results at high pressure ratios and low external Mach numbers.

3. The pressure coefficient (p - pm)/png in the supersonic stream
surrounding the Jjet is given by
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I

(o] Uz G o 0 4:ro 4ro

[eolng~s)
2 Z'BooR
+L _32._.3&3_4..3_33_4: f (z—s—BwR)'q(s)ds
ro 2ro 161'0 0

P-P 1 [To 1 (1 R R? fZ'B“R
—_— = — - B _— | - e e d
5 AT [0z - BR) - 5 (2 2 3 1Jo n(s)ds

o z-B R
- L (i - 9%, 14 )f (z - s - B_R)?q(s)ds
0

2\ [ZER 3
1 <6_2 _ A1S3R | 552;-R )f (z - 5 - BRR) n(s)ds + .
r O

4 5
768B°° 0 ZrO r3

which converges for 0 <z - B R <B,ry R <<rgy and where Dy, P Uy
and M, s&are the pressure, density, velocity, and Mach number of the
undisturbed external flow, and s is a dummy variable. The slope T7(s)
of the jet boundary may be obtained by differentiating the contour
equation in item 1 with respect to z. This equation was applied to
obtain the pressure on a plane surface (such as a wing or tail surface)

in the external stream near the jet. The results compared favorably
with experimental results.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, February 1, 1960
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APPENDIX - INTERPRETATION OF EQUATION (8)

The following equation in operational form is herein interpreted
by the procedure of reference 9:

- 2
Py = B, _ p U~ Z(0) KO(Boor.b')\) =(A) IO(BJ.I'b%)

+
ijg ijg B, K;(B ) B Il(BJ.rb7\)

(8)

Use is made of the following asymptotic expansions (ref. 13) for
the Bessel functions:

3
K(A) ~ A3 z :'@% for |arg A| <3« (A1)
(22)
I (A) = AN Ew (-1)" =%
n Af 27N e (aa)m
sl O 9
+ & 1+ n,m for larg%‘-w-‘i:tk:t
Af2xh (2n)™ 2
(az)
as |A| + ®, where
n+m- %. :
(n,m) = } 1Y,
. (n -m - —2-).
Interpreting the external flow expression first:
K, (B _r  A)-Kn(B 1, N)
o U K (BrAN| p 02 T |1 - = Kb 07\) >
g—l 0o 00 ( (ORI o} - o 00 _l_y—l 1(B°orb
© B, K (B r A) 2 B A ]
Py = LlTed Y3
2 Z
pOOUOO -
= Bi n(z) - = L f W(]";__s)q(s)ds
pJUg 0 oorb 0 oorb

(a3)

£99-H
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by use of the convolution equation and where

-1 | Borp MK (Borp) - Ko(B,rpA)
W(Br) gl{ b[lKl(gmrbK) 2 ]}

Note that the constant Boorb modifying A reverts to a reciprocal when

modifying z (see e.g. p. 325 of ref. 14). Substituting equations (A1)
in the expression for W gives

( _(om)
1 1 +Z (2B r A ) TN
W(B:I'b> =2 7¢B AL L (ae)
L ' +Z=1 (‘ZBir:%)m_J

Dividing the numerator by the denominator and interpreting the
resulting series term by term yield

2 3
1 3 z 3 b A 21 pA
W Z = o - = ——— + — - ( ) e (AS)
(Boor-b) 2 B(erb> 16 (erb> 256 Bwrb

which converges for small z/Bmz‘b greater than -2. The remaining
internal flow term on the right side of equation (8) is interpreted
next.

let n(z) = n(0) + ny(z); then

o-1 {m IO(Bjrb')\)}

il

1 -1 - Iy
: {ﬁm 1120 900) - _“1 xnlm}

1 Lo - z
o {n() 7(0) T(Bjrb

|

where

P I(Bar A) - I5(B.r A)
zZ - L)-1V5 D 0V\"3"b
"E) e
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Integreting by parts

_ 1 _ IO(B.rbK) 7
< l{B_J- (A) W}‘-‘ gl‘ {TI(Z) - n(0)T (Bjrb> - Tll(Z)T(O)

J

- B;Lrb [)Z nq(s)T’ (gj;'bs) ds} (a6)

since (0) = 0 and where
M
_ I.(B.ryA) - I.(B.r. A)
T’(Bz>=ng.r7\lJb oD L (o)
3o

i b Il(Bjrbx)
Substituting the asymptotic expansions (A2) for the Bessel functions and
letting § = Bjrb7\ yield

e 1 [ T
e’ ymomf . L (0,m)
1,(8) - I(8) f +; ) (zc)mfi £ ;1 (zc)mﬁ
I, S . 22
eg + - mil,m £ 1 _(_J_'Iﬁ
’ ;( e *é (2t)"
R

Dividing out the right side of this expression results in

= m {O,m
1ry 0 (zc)‘z‘
1. m=

ml + e'2§fl(;) + e"4gf2(g) ..+ e'zngfn(g)+ C.
1 +E (-)m (1,m)

i (26)"

vut £t {e-zngfn(g)} is 0 for z < 2n (see e.g. p. 116 of ref. 14),
s0 that these e modified terms do not influence T'(z/B.r ) for

z/B er < 2. Dividing the numerator by the denominator in the expression
o0

1+ E (- .(9:2%
&~ (2)

1430 () (m)

e (20)"

and interpreting the resulting series for T term

[afeleing
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1( 2z 3( 2
by term result in T(———Z—-—) - —( ) - ——(—) - . . . so that
Bjrb 2 Ber 16\Bsry
T(0) = 0. Differentiating T[<Z results in
Biry
1 3( z Z
T'(z)=-—-—(———>-...=-W(- ) (A7)
Ber 2 8 Bjrb Bjrb
for 0< Bore < 2. Since
er
z z “ar 3
[z - s _ f2Z - 8 _ s a
ny () (5 ) as (o) (352 )os =) [ sy e
ARl ) %o 5( )
0 0 0 BiTo

- [ rm () o - voma(e)

it follows from equations {A6) and (A7) that

l(-)‘) O(B . T -)\) _l_' (z) . z
By To(Byoh) B; ) er

Combining equations (8), (A3), (A5), and (A8) gives

=

(— Z - S) n(s)as § (48)

U2 2 z
P; - D PV p U
(g a) e - (a3 ) [ wos
U- j U4 B~  B°
P 5V P33 J p ;
2 z
| 2= L+ = n(s)as
8 ( 2 75 | e (Br)
AR5 B B5 ) Jo
2 2
UZ B
w0 i %) [ ) e
2 13 3
U“ BY z
21 pooco_él 1 Z - 8
+ + = n(s)as + . . . (9)
2561y (p U2 BO BZ) f (Bjrb )
3T “3/)J0
for 0 <Fo— <2
or Bjrb -
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Figure 1. - Linearized flow model.

,eL ’N (15)

.4l %
7z
A

Jet shape parameter, R/rOBJn(O)

0 .4 8 - 1.2 1.6 2.0

N

Axial distance from nozzle exit, z/Byrg

Figure 2. - Comparison of methods of computing jet shape
parameter for quiescent surroundings.
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Figure 3. - Comparison of first- and second-order theory for Jjet shape. Nozzle-
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Initlal slope of Jet boundary, n(0)
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Radial distance from nozzle centerline, rb/ro
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Figure 5. - Jet contour for supersonic external flow.
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Figure 6. - Jet contour for quiescent surroundings.
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